医学部・学会情報

心臓内の『渦血流』を同定する理論を世界に先駆けて構築 ~心血流の渦のパターンを文字化し、早期に心不全を発見する可能性~

概要

 心臓は効率よく血流を駆出するために、心臓内に様々な回転する流れ(=渦血流)を発生させることが知られています。例えば500年以上前にレオナルド・ダ・ヴィンチが想像で描いた心臓内部の絵画にも渦血流が描かれており、人体の神秘として人類の興味を引いてきました。近年では心エコーや心臓MRIなどの診断機器の進歩により、このような渦血流が本当に心臓内に発生しているということが画像で確認できるようになり、さらに、心疾患ではその渦のパターンが乱れることなどが解明され、この渦血流をこれらの計測データから拾い出すことが心疾患の状況を把握するのに有効と考えられています。しかし、心臓は全体が筋肉でできたポンプであり、心臓自体が拍動で動きながら非常に複雑な血流を発生させるため、従来のデータ解析技術では、これらの渦血流を一つ一つ拾い出すことは難しいとされていました。

 このたび、京都大学大学院理学研究科 坂上貴之教授と名古屋市立大学心臓血管外科 板谷慶一准教授は、科学技術振興機構(JST)未来社会創造事業「共通基盤」領域(運営統括:長我部信行)の支援を受けた共同研究により、トポロジー(位相幾何学)と力学理論を用いて、渦血流のパターンを正確に同定する新しい理論(流線トポロジー解析=Topological Flow Data Analysis(TFDA))を構築することに成功しました。

 前述の通り、心臓はそれ自体が拍動して動くことに加え、弁などの心腔内構造物も拍動によって動くため、非常に複雑な流れが発生します。そこで坂上の研究グループが、これまでに独自に開発してきた「流線トポロジー解析」により、拍動する心筋壁など、心内腔に現れる流れを球面の上の流れにマッピ

図 TFD解析で、心臓内の渦流を文字列として表現し、それに基づいて心機能の分類を与え、見通しの良い心疾患の医療の実現に役立てます(TFD解析のイメージ)

ングするという数学的な処理を行い、ダイナミックに運動する心臓の中でも渦血流を同定できるようにしました。この理論を使って、渦血流の一つ一つに文字を割り当て「解読」し、健常な心臓と極初期の心不全にも大きな違いがあることなどを発見しました。これにより、厳密な数学に基づいて、古来より神秘とされた心臓内の渦流の医学・生理学的なメカニズムを解明し、新しい心機能の分類が可能になります。さらに、この分類を用いて、心疾患の病態を定量的に示すことで、早期に心不全に対して、より良質の医療が実現できる可能性があると期待されています。

 本研究成果は、2023年8月11日(現地時間)に米国の国際学術雑誌「SIAM Journal on Imaging Sciences」にオンライン掲載されました。

1.医学と数学の研究背景

 医療の進歩とともに健康寿命が延びつつある今日、循環器疾患では一つの病態にとどまらず、心臓弁膜症不整脈が併発したり、先天性心疾患心不全が合併したりするなどと、複合的で複雑な病態をきたす患者さんが増加しています。従来の医学では経験の蓄積や統計データに基づき、各々の疾病に対してその治療方法が決められ診療ガイドラインが策定されてきましたが、前述のように複雑な病態に対しては、患者さんごとに合わせたテーラーメイド医療が求められるようになってきました。しかし、心臓の病態を詳しく理解するために心腔内の渦血流を把握するのは技術的にも非常に困難であり、旧来より人類の神秘の一つとされてきました。

 一方、近年画像診断技術やコンピュータ技術が進歩し、心エコーや心臓MRIなどの医療用画像診断機器で血流が可視化できるようになり、心臓の渦血流は心不全などでは回転が弱くなることなどが観察されてきました。しかし、単に複雑な渦血流をただ観察しているだけでは、その渦血流が効率よく血液の拍出に貢献しているかを定量的に評価できないため、流れのパターンを正確に抽出する必要がありました。

 数学には「トポロジー」と呼ばれる幾何学の分野があります。これは、与えられた図形に対して、そこに少しずつ変形(摂動)を加えて、それでも変わらない図形の性質を調べる分野です。京都大学大学院理学研究科 坂上貴之(応用数学・数理流体力学)教授の研究グループでは、トポロジーや力学系理論などを用いて、流れによって動く微粒子の軌道全体のトポロジカルな構造に着目し、ノイズや誤差といった変動(摂動)に対しても堅牢に残る流れの普遍的構造を把握し分類する数学理論(流線トポロジー解析=TFDA)を構築してきました。

 一方、名古屋市立大学心臓血管外科の板谷慶一准教授は、心エコーや心臓MRIを用いて血流を可視化する方法や生理学的な拍動血流を再現するシミュレーションの手法などの「血流解析」という分野を開拓し、心臓内に様々な回転する流れ(=渦血流)と、病的な血流の乱流が強い摩擦エネルギーを発生し、そのエネルギー損失が心負荷となり心不全を惹起することなどを突き止めてきました。また、板谷准教授は血流解析のための医学研究支援を行っている株式会社Cardio Flow Design(東京都千代田区一番町、代表取締役、西野輝泰医師)の創設者の一人として、先天性心疾患などでの複雑な病的形状を持つ心臓でも、最適な血流が得られる設計で手術を行い、また全国の心臓外科医からコンサルトを受けシミュレーションに基づく手術術式の設計を提供してきました。

 そこで坂上教授と板谷准教授は2017年より共同研究を開始し、心臓の血流画像で示される渦血流に流線トポロジー解析を適用することを検討しました。特に、心臓の中で発生する渦血流は効率よく血液を全身に駆出するために必要であるとされる一方で、一回の心拍の間に複雑な様相の渦血流が観察され,それらが次々と発生しては消滅することを繰り返すため、客観的に渦血流のパターンを定義し抽出することが難しく、心疾患を評価することからはかなり遠いという現実がありました。そのため、坂上教授と板谷准教授は、心臓ではダイナミックに運動する心筋や心臓弁の運動により血流が発生しているため、これまでの流線トポロジーの理論をそのままは適用できないという問題に直面しました。

2.問題解決のアイデアとブレークスルー

解決した課題

 坂上教授のグループが開発してきた従来の流線トポロジー解析の数学理論では、(i)二次元の平面内の流れが運動にともなって流体が圧縮されない性質を持つこと、および(ii)流れは境界に沿って動くという(すべり)境界条件を満たすことが前提となっていました。このことを心臓に置き換えて考えると(i)エコーなどで計測した断面にいわば血流が閉じ込められているような状態で断面内では流れが圧縮する様相を示すこと、かつ(ii)血液を満たしている心臓の構造物である心筋壁や心臓弁は動かず血流がその境界を滑っていく状態を仮定していることになります。しかし実際には心臓は拍動を繰り返し、また内血流の境界に当たる心筋や心臓弁などの構造物は大きく変動し流れの駆動力や発生源となっています。また、心臓内の血流は当然3次元的であり、エコーで計測する断面に沿って流れることもあれば断面を通過する血流もあります。そのため従来手法の適用が難しく、これらの課題を解決するような数学理論が必要でした。

問題解決のアイデア

 流れの圧縮性の問題点(i)は、従来の非圧縮流体でのTFDAの理論を数学的に拡張することにより解決されました。動く境界条件の問題点(ii)は、左心室の境界を一点に貼り合わせるという数学的操作により、「退化特異点」と数学的には呼ばれる流れ場として理論に取り込むことにより解決しました。また、心エコー画像などの診療用装置から得られた画像データに対して、上述の理論と矛盾しないようにデータを補正する位相的前処理(Topological pre-conditioning)という数学的な処理を施すことを試みました。

研究成果

 本研究グループは、心血流エコーやMRIから得られる流線画像データに対して適用できる流線トポロジカルデータ解析の数学理論を完成しました。

図1(左上)心エコーVFMのデータ (右上)TFD解析によって得られた渦血流領域(赤い領域) (下)TFD解析で得られるCOT表現文字列

これを用いると、心エコーVFM(Vector Flow Mapping)によって得られる健常例の左室心尖部の長軸断面で得られる収縮期血流画像(図1の左上)から、特徴的な位相構造を抽出して数学的に分類し、さらにそのパターンに固有の文字列表現(COT表現:図1下)を割り当てることができました。このCOT表現後に一部の特定文字列が心臓血流内部の特定渦領域(図1右上の赤色部分)を表現するので、これを「位相的渦構造」として、数学的にも曖昧さなく定めることができます。このような心血流エコー画像をトポロジカルデータ解析する技術開発は世界に先駆けるものです。この結果、これまで明確な定義がなかった心臓血流が作り出す渦血流に、TFDAは「位相的渦構造」と呼ばれる新しい概念を定義することに成功しました。さらに、このことにより、渦構造と心臓のポンプとしての機能や心疾患の病態を位相的渦構造で評価できるようになりました。


苦労した点:

 本研究は、数学と臨床医学間の分野横断型研究ですが、この研究のきっかけとなったのは、坂上教授が京都大学大学院理学研究科内において開室している「諸分野のための数学よろず相談室(Math Clinic)」において、板谷准教授からの質問を受け付けたことでした。質問を受け付けてから今回の成果にいたるまでに対話を重ねること5年、坂上教授は心臓の解剖や生理学を学び、板谷准教授は幾何学やトポロジーを学ぶこととなりました。さらには坂上教授と板谷准教授はCardio Flow Design社のエンジニアたちと議論を重ね、医学や数学の難解な専門的知識を要するこの理論の実装を成功させました。本研究では、異分野研究における言葉の壁をどう乗り越え、それをどう高いレベルでの数理科学の研究として昇華させ、さらにその成果を臨床医学へどのように還元していくかといった議論をまとめ上げるのに苦労しました。

  • 1
  • 2

医学部・学会情報